DOCTOR AI: PREDICTING CLINICAL EVENTS VIA RECURRENT NEURAL NETWORKS

Edward Choi, Mohammad Taha Bahadori, Jimeng Sun School of Computational Science and Engineering Georgia Institute of Technology mp2893@gatech.edu,bahadori@gatech.edu,jsun@cc.gatech.edu

ABSTRACT

Large amount of Electronic Health Record (EHR) data have been collected over millions of patients over multiple years. The rich longitudinal EHR data documented the collective experiences of physicians including diagnosis, medication prescription and procedures. We argue it is possible now to leverage the EHR data to model how physicians behave, and we call our model Doctor AI. Towards this direction of modeling clinical behavior of physicians, we develop a successful application of Recurrent Neural Networks (RNN) to jointly forecast the future disease diagnosis and medication prescription along with their timing. Unlike traditional classification models where a single target is of interest, our model can assess the entire history of patients and make continuous and multilabel predictions based on patients' historical data. We evaluate the performance of the proposed method on a large real-world EHR data over 260K patients over 8 years. We observed Doctor AI can perform differential diagnosis with similar accuracy to physicians. In particular, Doctor AI achieves up to 79% recall@30, significantly higher than several baselines. Moreover, we demonstrate great generalizability of Doctor AI by applying the resulting models on data from a completely different medication institution achieving comparable performance.

1 INTRODUCTION

The broad adoption of Electronic Health Records (EHR) has continuously generated large amount of patient data that documents rich clinical interactions over time. This high-dimensional longitudinal data has created an opportunity to perform sophisticated temporal analysis that was not possible before. Forecasting clinical events for patients is an especially challenging, yet important task. Our goal is to develop a temporal prediction model that mimics physician practice based on the collective memory of many physicians, i.e., large amount of EHR data over a long period of time. Successfully forecasting clinical events can not only facilitate patient-specific care and timely intervention, but also potentially reduce healthcare cost.

Although related problems such as disease progression modeling have been studied by many researchers over several decades, e.g. (Heckerman, 1990; Chapman et al., 2001; Lange et al., 2015), most works do not achieve required accuracy and scalability, or need excessive expert domain knowledge, partly due to the lack of rich longitudinal EHR data and scalable computational architecture. Thanks to the recent advances in recurrent neural network, we propose *Doctor AI* system that can diagnose multiple disease conditions and prescribe relevant medications based on historical EHR data. Furthermore, the Doctor AI tries to predict when the patient will make the next visit. Our ultimate goal is to have Doctor AI help both health providers and patients.

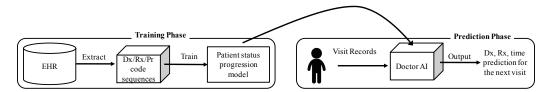


Figure 1: Doctor AI extracts clinical events as multilable point process data from EHR and learns a model for patient status dynamics. Given a new patient's record, it can forecast the patient's diagnoses (Dx), prescribed medications (Rx), and the time until his/her next visit.

The problem in general can be described as a multilabel marked point process modeling task. The task is different from common sequential learning tasks such as those in natural language processing as it requires prediction of multiple categories over the continuous time axis. The key challenge in this task is to find a flexible model that is capable of predicting multiple event types for patients. The two main classes of techniques, continuous-time Markov chain based models (Nodelman et al., 2002; Lange et al., 2015; Johnson & Willsky, 2013), and intensity based point process modeling techniques such as Hawkes processes (Liniger, 2009; Zhu, 2013; Choi et al., 2015) have been proposed but they are expensive to generalize to nonlinear and multilabel settings. Furthermore, they often make strong assumptions about the data generation process which might not be valid in large-scale EHR datasets.

The key idea of this paper is to learn an effective representation of the patient status over time and to leverage such representation to predict future clinical events of the patients such as diagnoses and medication prescriptions and their timings. To learn such patient representations we propose to use recurrent neural networks (RNN), considering the fact that patients have different length of medical records and that recurrent neural networks have been shown to be particularly successful for representation learning in sequential data, *e.g.* (Graves, 2013; Graves & Jaitly, 2014; Sutskever et al., 2014; Kiros et al., 2014; Zaremba & Sutskever, 2014). In particular, we make the following main contributions in this paper:

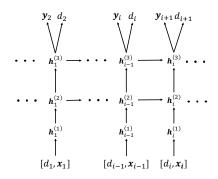
- We demonstrate a successful application of RNNs in representing the status of patients, predicting the future clinical events and the timing of the events. The trained RNN is able to achieve above 64% (79%) recall in its top 10 (30) predicted diagnosis codes, demonstrating great potential as a computerized differential diagnosis guide.
- We propose an efficient initialization scheme for RNNs using Skip-gram embedding (Mikolov et al., 2013) and show that it improves the performance of the RNN in both accuracy and speed.
- We empirically confirm that RNNs can be used to transfer knowledge across multiple medical institutions. This suggests that hospitals with insufficient patient records can adopt the models learned from larger data of other health institutions to improve the quality of their clinical service.

2 Methodology

This section describes the main proposed neural network model. After mathematically describing the problem as a multilabel point process modeling, we outline our approach for addressing the challenges. The proceeding sections are devoted to details of the model and the technical details of the learning procedure.

Problem setting. For each patient, we are given a sample of size n from a univariate multilabel marked point process in the form of (t_i, x_i) for i = 1, ..., n. Each pair represents an event, such as a hospital visit, during which multiple medical codes such as ICD-9 diagnosis codes, procedure codes, or medication codes are assigned to a patient. The multi-hot label vector $x_i \in \{0, 1\}^p$ represents the medical codes assigned at

Figure 2: This diagram shows how we have applied RNNs to solve the problem of joint forecasting of next visits' time and the codes assigned during each visit. The first layer simply embeds the high-dimensional input vectors in a lower dimensional space. The next layers are the recurrent units (here two layers), which learn the status of the patient at each timestamp as a real-valued vector. Given the status vector, we use two dense layers to generate the codes observed in the next timestamp and the duration until next visit.



time t_i , where p denotes the number of unique medical codes. At each timestamp, we may extract higherlevel codes for prediction purposes and denote it by y_i , see the details in Section 4.1. The number of events for each patient may differ.

Description of neural network architecture. Our goal is to learn an effective vector representation for the status of patients at each timestamp t_i . Using the representation for the status of patients, we would be able to jointly predict different future quantities about this patient such as future diagnoses and medications y_{i+1} and the time duration until next event $d_{i+1} = t_{i+1} - t_i$. Finally, we would like to perform all these steps jointly in a single supervised learning scheme. As we discussed in the introduction, we use recurrent neural networks to learn such patient representations. We treat the state vector of RNNs as the latent representation for the patient status and use it for predicting multiple forms of outputs.

The proposed architecture is shown if Figure 2. The input at each timestamp t_i is the concatenation of the multi-hot coding x_i of the multilabel categories and the duration d_i since the last event. In our datasets, this input have as large as 40,000 dimensions. Thus, the next layer maps into a lower dimensional space. Then, we pass the lower dimensional vector through units of an RNN. The RNN units can be simple RNN units (Le et al., 2015) or more complex recurrent units such as Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997; Graves et al., 2009) or Gated Recurrent Units (GRU) (Chung et al., 2014). We also can stack multiple units of RNN on top of each other to increase the representative power of the network. Finally, we use a softmax layer to predict the future codes and a rectified linear unit to predict the time duration until next event.

Details of the RNN. Specifically, we implemented our RNN with GRU. Although LSTM has drawn much attention from many researchers, GRU has recently shown to have similar performance as LSTM, while employing a simpler architecture (Chung et al., 2014). In order to precisely describe the network used in this work, we reiterate the mathematical formulation of GRU as follows:

$$egin{aligned} oldsymbol{z}_i &= \sigma(oldsymbol{W}_{z}oldsymbol{x}_i + oldsymbol{U}_{z}oldsymbol{h}_{i-1} + oldsymbol{b}_{z}) \ oldsymbol{r}_i &= \sigma(oldsymbol{W}_{r}oldsymbol{x}_i + oldsymbol{U}_{r}oldsymbol{h}_{i-1} + oldsymbol{b}_{r}) \ oldsymbol{ ilde{h}}_i &= ext{tanh}(oldsymbol{W}_{h}oldsymbol{x}_i + oldsymbol{r}_i \circ oldsymbol{U}_{h}oldsymbol{h}_{i-1} + oldsymbol{b}_{h}) \ oldsymbol{h}_i &= ext{tanh}(oldsymbol{W}_{h}oldsymbol{x}_i + oldsymbol{r}_i \circ oldsymbol{U}_{h}oldsymbol{h}_{i-1} + oldsymbol{b}_{h}) \ oldsymbol{h}_i &= ext{tanh}(oldsymbol{W}_{h}oldsymbol{x}_i + oldsymbol{r}_i \circ oldsymbol{U}_{h}oldsymbol{h}_{i-1} + oldsymbol{b}_{h}) \ oldsymbol{h}_i &= ext{tanh}(oldsymbol{H}_{i-1} + (1 - oldsymbol{z}_i) \circ oldsymbol{ ilde{h}}_{i}) \ oldsymbol{h}_i &= ext{tanh}(oldsymbol{H}_{h-1} + (1 - oldsymbol{z}_i) \circ oldsymbol{ ilde{h}}_{i}) \ oldsymbol{h}_i &= ext{tanh}(oldsymbol{H}_{h-1} + (1 - oldsymbol{z}_i) \circ oldsymbol{ ilde{h}}_{i}) \ oldsymbol{h}_i &= ext{tanh}(oldsymbol{H}_{h-1} + (1 - oldsymbol{z}_i) \circ oldsymbol{ ilde{h}}_{i}) \ oldsymbol{h}_i &= ext{tanh}(oldsymbol{H}_{h-1} + (1 - oldsymbol{z}_i) \circ oldsymbol{ ilde{h}}_{i}) \ oldsymbol{h}_i &= ext{tanh}(oldsymbol{H}_{h-1} + (1 - oldsymbol{ta}_i) \circ oldsymbol{ ilde{h}}_{i}) \ oldsymbol{h}_i &= ext{tanh}(oldsymbol{H}_{h-1} + oldsymbol{h}_{i-1} + (1 - oldsymbol{ta}_{i}) \circ oldsymbol{ ilde{h}}_{i}) \ oldsymbol{h}_{i-1} &= ext{tanh}(oldsymbol{H}_{h-1} + oldsymbol{h}_{i-1} + (1 - oldsymbol{ta}_{i}) \circ oldsymbol{ ilde{h}}_{i}) \ oldsymbol{h}_{i-1} &= ext{tanh}(oldsymbol{h}_{i-1} + oldsymbol{h}_{i-1} +$$

where z_i and r_i respectively represent the update gate and the reset gate, \hat{h}_i the intermediate memory unit, h_i the hidden layer, all at timestep t_i . For predicting the diagnosis codes and the medication codes at each timestep t_i , a Softmax layer is stacked on top of the GRU, using the hidden layer h_i as the input: $\hat{y}_{i+1} = \text{softmax}(W_{code}^{\top}h_i + b_{code})$. For predicting the time duration until the next visit, a rectified linear unit (ReLU) is placed on top of the GRU, again using the hidden layer h_i as the input: $\hat{d}_{i+1} =$ $\max(\boldsymbol{w}_{time}^{\top}\boldsymbol{h}_i + b_{time}, 0)$. The objective of training our model is to learn the weights $W_{\{z,r,h,code\}}$, $U_{\{z,r,h\}}, \boldsymbol{b}_{\{z,r,h,code\}}, \boldsymbol{w}_{time}$ and b_{time} . The values of all \boldsymbol{W} 's and \boldsymbol{U} 's were initialized to orthonormal matrices using singular value decomposition of matrices generated from the normal distribution (Saxe et al., 2013). The initial value of \boldsymbol{w}_{time} was chosen from the uniform distribution between -0.1 and 0.1. All \boldsymbol{b} 's and b_{time} were initialized to zeros. The joint loss function consists of the cross entropy for the code prediction and the squared loss for the time duration prediction, as described below for a single patient:

$$\mathcal{L}(\boldsymbol{W}, \boldsymbol{U}, \boldsymbol{b}, \boldsymbol{w}_{time}, b_{time}) = \sum_{i=1}^{n-1} \left\{ \left(\boldsymbol{y}_{i+1} \log(\widehat{\boldsymbol{y}}_{i+1}) + (1 - \boldsymbol{y}_{i+1}) \log(1 - \widehat{\boldsymbol{y}}_{i+1}) \right) + \frac{1}{2} \| d_{i+1} - \widehat{d}_{i+1} \|_2^2 \right\}$$

As mentioned above, the multi-hot vectors x_i of almost 40,000 dimensions are first projected to a lower dimensional space, then put into the GRU. We employed two different approaches for this: (1) We put an extra layer of a certain size between the multi-hot input x_i and the GRU, and call it the embedding layer. We denote the weight matrix between the multi-hot input vector and the embedding layer as W_{emb} . Then we learn the weight W_{emb} as we train the entire model. (2) We initialize the weight W_{emb} with a matrix generated by Skip-gram algorithm (Mikolov et al., 2013), then refine the weight W_{emb} as we train the entire model. This can be seen as using the pre-trained Skip-gram vectors as the input to the RNN and fine-tuning them with the joint prediction task. The brief description of learning the Skip-gram vectors from the EHR is provided in Appendix A. The first and second approach can be formulated as follows:

$$\boldsymbol{h}_{i}^{(1)} = [\tanh(\boldsymbol{x}_{i}^{\top}\boldsymbol{W}_{emb} + \boldsymbol{b}_{emb}), d_{i}] \quad (1) \qquad \boldsymbol{h}_{i}^{(1)} = [\boldsymbol{x}_{i}^{\top}\boldsymbol{W}_{emb}, d_{i}] \quad (2)$$

where $[\cdot, \cdot]$ is the concatenation operation used for appending the time duration to the multi-hot vector $h_i^{(1)}$ to make it an input vector to the GRU.

3 Related Work

In this section, we briefly overview the common approaches to modeling multilabel event data with special focus on the models that have been applied to medical data.

Discretization vs Continuous-time modeling. There are two main approaches to modeling point process data: with or without discretization (binning) of time. When the time axis is discretized, the point process data can be converted to binary time series (or time series of count data if binning is coarse) and analyzed via time series analysis techniques (Truccolo et al., 2005; Bahadori et al., 2013; Ranganath et al., 2015). However, this approach is inefficient as it produces long time series whose elements are mostly zero. Furthermore, discretization of time introduces noise in the time stamps of visits. Finally, these models are often not able to model the duration until next event. Thus, it is advantageous not to discretize the data both in terms of modeling and computation.

Continuous-time models. Among the continuous-time models, there are two main techniques: continuoustime Markov chain based models (Nodelman et al., 2002; Foucher et al., 2007; Johnson & Willsky, 2013; Lange, 2014; Liu et al., 2013) and intensity function modeling techniques such as Cox and Hawkes processes (Liniger, 2009; Zhou et al., 2013; Linderman & Adams, 2014; Choi et al., 2015). The latter has been shown to have computational advantages over the former. Moreover, modeling multilabel marked point processes with continuous-time Markov chains expands their state-space and make them even more expensive.

However, Hawkes processes only depend linearly on the past observation times; while there are limited classes of non-linear Hawkes process (Zhu, 2013), the temporal dynamics can be more complex. Moreover, there is no scalable multi-label extension for Hawkes processes. Finally, Hawkes processes are known to have a flat loss function near optimal value of the parameters which renders the gradient-based learning algorithms inefficient (Veen & Schoenberg, 2008). In this paper we address these challenges by designing a recurrent neural network which has been shown to be successful in learning complex sequential patterns.

# of patients	263,706	Total # of codes	38,594
Avg. # of visits	54.61	Total # of 3-digit Dx codes	1,183
Avg. # of codes per visit	3.22	# of top level Rx codes	595
Max # of codes per visit	62	Avg. duration between visits	76.12 days

Table 1: Basic statistics of the Sutter Health clinical records dataset.

Health care. There have been active research in modeling the temporal progression of diseases (Mould, 2012). Generally, most works can be divided into two groups: works that focus on a specific disease and works that focus on a broader range of diseases.

Specific-purpose progression modeling. There have been many studies that focus on modeling the temporal progression of a specific disease based on either intensive use of domain-specific knowledge (De Winter et al., 2006; Ito et al., 2010; Tangri et al., 2011) or taking advantage of advanced statistical methods (Liu et al., 2013; Jackson et al., 2003; Sukkar et al., 2012; Zhou et al., 2012). Specifically, studies have been conducted on Alzheimer's disease (Ito et al., 2010; Zhou et al., 2012; Sukkar et al., 2012), glaucoma (Liu et al., 2013), chronic kidney disease (Tangri et al., 2011), diabetes mellitus (De Winter et al., 2006), and abdominal aortic aneurysm (Jackson et al., 2003)

General-purpose progression modeling. Recently, (Wang et al., 2014; Choi et al., 2015; Ranganath et al., 2015) proposed more general approaches to modeling the progression of wider range of diseases. As discussed earlier, (Choi et al., 2015) used Hawkes process, and (Ranganath et al., 2015) discretized time in order to model multiple patients and multiple diseases. (Wang et al., 2014) proposed a graphical model based on Markov Jump Process to predict the stage progression of chronic obstructive pulmonary disease (COPD) and its co-morbid diseases.

One of the main challenges in using these algorithms is scalability. The datasets used in previous works typically contain a few thousands of patients and a few hundreds of codes. Even the largest dataset used by (Ranganath et al., 2015) contains 13,180 patients and 8,722 codes, which is significantly smaller than Sutter dataset described in Table 1. Need for domain-specific knowledge is also a big challenge. For example, (Wang et al., 2014) not only used a smaller dataset (3,705 patients and 264 codes) but also used co-morbidity information to improve the performance of their algorithm. Such expert knowledge is difficult to obtain from typical EHR data.

4 **EXPERIMENTS**

In this section, we describe the details of our experiments, the datasets that we have used and the baselines. Throughout this section, we demonstrate the success of the proposed approach in forecasting the future events of the patients.

4.1 DATASET DESCRIPTION

We use a health records dataset provided by Sutter Health; its basic statistics are summarized in Table 1.

Population and source of data The source population for this study was primary care patients from Sutter Palo Alto Medical Foundation (PAMF) Clinics, a multispecialty group practice with large primary care practices that has used EHR for more than 8 years. The dataset was extracted from a case-control study for heart failure nested within Sutter-PAMF. The dataset consists of encounter orders, medication orders, problem list records and procedure orders. The data are fully de-identified and do not include any personal health information (PHI).

Data processing For input, we used diagnosis codes, medication codes, and procedure codes. Diagnosis codes, which are presented in the ICD-9 format, could be found in the encounter orders, medication orders,

problem list records and procedure orders. Medication and procedure codes could be found in medication orders and procedure orders respectively. We extracted all diagnosis, medication and procedure codes from the dataset for each patient, and laid them out in a temporal order. If a patient received multiple codes in a single visit, those codes were assigned the same timestamp. By excluding patients that made less than two visits, we were left with 263,706 patients who made on average 54.61 visits per person.

Medical code grouping The number of ICD-9 diagnosis codes are approximately 11,000. The number is approximately 18,000 for medication codes. Many codes in this set are very granular; for example, pulmonary tuberculosis (ICD-9 code 011) is divided into 70 subcategories (ICD-9 code 011.01, 011.02, ..., 011.95, 011.96). In a practical perspective, however, simply knowing that a patient is likely to have pulmonary tuberculosis is enough to increase the doctor's awareness of the severity of the clinical situation. Therefore, in order to predict future diagnosis codes and medication codes, we group the codes into a higher-order codes to decrease the granularity among the codes that we predict. For the diagnosis codes, we use the 3-digit ICD-9 code system, where the the number of unique codes are 1,183 in our dataset. For the medication codes, we use the Sutter in-house medication grouper, which groups the medication codes into 595 unique codes. Therefore, the future code prediction problem reduces from approximately a 29,000 class classification to a 1,778 class classification. The y_i in Figure 2 is the 1,778-dimensional vector representing the grouped diagnosis codes and medication codes.

Training specifics. For training all models including the baselines, we used 85% of the patients as the training set and 15% as the test set. Since we trained the RNN models for 20 epochs without evaluating against the test set, it is very unlikely that the models were overfit. We used dropout between the GRU layer and the prediction layer (*i.e.* code prediction and time duration prediction). Dropout was also used between GRU layers if we were using a multi-layer GRU. We also applied norm-2 regularization on both W_{code} and w_{time} . Both regularization coefficients were set to 0.001. The size of the hidden layer h_i of the GRU was set to 2000 to guarantee a sufficient expressive power. After running sets of preliminary experiments where we tried the size from 100 to 2000, we noticed that the code prediction performance started to saturate around 1600~1800. All models were implemented with Theano (Bastien et al., 2012) and trained on a machine equipped with two Nvidia Tesla K80 GPUs.

4.2 EVALUATION METRICS

We use the following metrics for evaluating the performance of the algorithms in predicting the codes and the time duration until next visit.

Top-k recall. In order to evaluate the performance of algorithms for forecasting next events, we use the top-k recall measure defined as follows:

$$top-k recall = \frac{\# of true positives in the top k predictions}{\# of true positives}$$

This metric is consistent with the differential diagnosis framework where the machine suggests k possible codes and we measure the fraction of true codes that are correctly retrieved. We choose k = 10, 20, 30 because as shown in Table 1 on average every visit includes more than three codes. Thus, selecting small k may result in inaccurate evaluation.

Top-k recall mimics the behavior of doctors conducting differential diagnosis, where doctors list most probable diagnoses and treat patients accordingly to identify the patient status. Therefore a machine with a high Top-k recall translates to a doctor with an effective diagnostic skill. This makes Top-k an attractive tool for evaluating the performance of the models for our problem.

We select the maximum k to be 30 in order to evaluate the performance of the models not only for simple cases but also for complex cases. Near 50.7% of the Sutter patients have been assigned with more than 10

diagnosis and medication codes at least once. Since it is those complex cases that are of interest to predict and analyze, we had to choose k to be large enough.

Coefficient of determination or R^2 is a metric for evaluation of predictive performance of regression and forecasting algorithms. It compares the accuracy of prediction with respect to simple prediction by mean of the target variable.

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y}_{i})^{2}}$$

Given the fact that the time duration varies significantly over time and the interest in accurately predicting the durations decreases as the patients visit after a long period of time, we measure the R^2 performance of the algorithms in predicting $\log(d_i)$ to lower the impact of anomalous long durations in the performance metric. In the same spirit, we train all models to predict the logarithm of the time duration between visits.

4.3 **BASELINES**

We compare our model against several baselines as described below. Some of the existing techniques based on CTMC and latent space models were not scalable enough to be trained in the entire dataset in a reasonable amount of time; thus comparison could not be fair.

Intuitive baselines. We compare our algorithms against simple baselines that are based on experts' intuition about the dynamics of events in clinical settings. The first baseline is to use a patient's medical codes in his last visit as the prediction for his current visit. This baseline is competitive when the status of a patient with a chronic condition stabilizes over time. We can make this baseline stronger, by using the top-k most frequent labels observed in visits prior to the current visits. In the experiments we observe that the second baseline is quite competitive.

Logistic and Neural Network time series models. A common way to perform prediction task is to use $(\mathbf{x}_{i-1}, d_{i-1})$ to predict the codes in the next event \mathbf{x}_i . We can use logistic regression or multilayer preceptron (MLP). To make this baseline stronger, we can use the data from L time lags before and concatenate the $(\mathbf{x}_{i-\ell}, d_{i-\ell})$ for $\ell = 1, \ldots, L$ to create the features for prediction of \mathbf{x}_i . Similarly, we can have a model that predicts the time until next event using rectified linear units as the output activation. While increasing the number of lags allows the model to capture longer history, it results in two disadvantages compared to RNNs: it increases the number of parameters of the model and also prevents the model to be used for prediction of the first L visits of the patients. Because of this limitation, we do not choose L to be bigger than 5 because the model loses its practicality for many patients with short visit history. Due to lack of space, we describe the details of MLP design in Appendix B.1.

Manual feature extraction. It is common in information retrieval to extract features from text data to improve the performance of learning algorithms. We define a set of *tf-idf* like features (Manning et al., 2008) based on the history of patients to not only provide potentially better features, but also give learning algorithms access to longer past information. The *idf* vector is calculated based on the entire dataset. To calculate the *tf* for each patient at each visit, we find the term frequencies in all visits until the current visit. We also generate five values based on the duration information: last, min, max, mean, and std of durations until the current visit. We concatenate the *tf-idf* vector and the duration features with the multihot vector of the current visit and use it in the learning algorithms, i.e., multilayer preceptron in our experiments. Further details of the feature extraction process are provided in Appendix B.2.

4.4 RESULTS

Table 2 compares the results of different algorithms with RNN based Doctor AI. We report the results in three settings: when we are interested in (1) only predicting disease codes (Dx), (2) only medication codes (Rx),

	Dx C	Only Reca	all $@k$	Rx C	Only Reca	all $@k$	Dx	,Rx,Tim	e Recall	@k
Algorithms	k = 10	k = 20	k = 30	k = 10	k = 20	k = 30	k = 10	k = 20	k = 30	R^2
Last visit		29.17			13.81			26.25		
Most freq.	56.63	67.39	71.68	62.99	69.02	70.07	48.11	60.23	66.00	—
Logistic (L=1)	22.97	32.20	36.58	28.01	39.75	43.79	17.66	26.12	31.23	0.0013
MLP(L=1)	26.09	39.19	48.04	32.27	51.12	61.50	19.49	30.80	38.13	0.0017
Logistic (L=5)	26.04	39.17	48.19	32.39	51.06	61.03	18.79	29.13	35.63	0.0013
MLP (L=5)	26.14	39.41	48.28	32.39	51.18	61.66	19.32	30.77	38.08	0.0002
Feature Ext.	26.12	39.33	48.20	32.27	51.12	61.65	19.60	30.80	38.13	0.0022
RNN-1	63.12	73.11	78.49	67.99	79.55	85.53	53.86	65.10	71.24	0.2519
RNN-2	63.32	73.32	78.71	67.87	79.47	85.43	53.61	64.93	71.14	0.2528
RNN-1-IR	63.24	73.33	78.73	68.31	79.77	85.52	54.37	65.68	71.85	0.2492
RNN-2-IR	64.30	74.31	79.58	68.16	79.74	85.48	54.96	66.31	72.48	0.2534

Table 2: Accuracy of algorithms in forecasting future medical activities.

and (3) jointly predicting Dx, Rx, and time to next visit. The results confirm that the proposed approach is able to outperform the baseline algorithms by a large margin. Note that the recall values for the joint task are lower than those for single Dx or Rx prediction because the hypothesis space is larger for the joint prediction task. Comparing RNN-based and most frequent past pattern algorithm with the lagged multilayer perceptron algorithm, we postulate that the status of the patients in this dataset depends on more than 5 lags. This can be because this dataset is collected for study of heart failure which shows long-term dynamics.

The superior performance of RNN based approaches can be attributed to the efficient representation that they learn for patients at each visit (Bengio et al., 2013; Schmidhuber, 2015). RNNs are able to learn succinct vector representations of patients by accumulating the relevant information from their history and the current set of codes. Given our network structure and the loss function, we can observe from the experimental results that the hidden layer of the RNN significantly outperforms at learning efficient representations for the patient status than ad-hoc feature engineering (*e.g. tf-idf* features used in the baseline models) such that a simple linear classifier can effectively predict the codes of the next visit.

The results also suggest that increasing the number of lags in the logistic and MLP approaches may not significantly improve the performance. Given the size of the dataset, this can be due to overparameterization of the model that may push the models to the boundary of high-dimensionality. While we use L_1 regularization in both cases, the result indicates that it cannot fully prevent noise accumulation due to noisy input dimensions.

Table 2 confirms that learning patient representation with RNN is easier with the input vectors that are already efficient representations of the medical codes. The RNN trained with the Skip-gram vectors (denoted by RNN-IR) consistently outperforms the RNN that learns the weight matrix W_{emb} directly from the data, with only one exception, the medication prediction Recall@30, although the differences are insignificant. The results also confirm that having multiple layers when using RNN improves its ability to learn more efficient representations. The results also indicate that a single layer RNN might have enough representative power to capture the dynamics of medications, and adding more layers may not improve the performance.

The results also indicate that our approach significantly improves the accuracy of predicting the time duration until the next visit compared to the baselines. However, the absolute value of R^2 metric shows that accurate prediction of time intervals remains as a challenge. We believe achieving significantly better time prediction without extra features should be difficult because the timing of a clinical visit can be affected by many personal factors such as financial status, location of residence, means of transportation, and life style, to



Figure 3: Characterizing behavior of the trained network: (a) Prediction performance of Doctor AI as it sees a longer history of the patients. (b) Change in the perplexity of response to a frequent code (hypertension) and an infrequent code (Klinefelter's syndrome).

name a few. Thus, without such sensitive personal information, which is rarely included in the EHR, accurate prediction of time intervals should be unlikely.

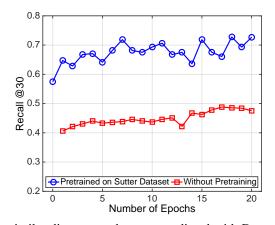
4.5 UNDERSTANDING THE BEHAVIOR OF THE NETWORK

In order to study the applicability of our model in a real-world setting where patients have varying length of medical records, we conducted an additional experiment to study the relationship between the length of the patient medical history and the prediction performance. To this end, we selected 5,800 patients from the test set who had more than 100 visits. We used the best trained model to predict the diagnosis codes at visits at different times and found the mean and standard error of recall across the selected patients. Figure 3a shows the result of the experiment. We believe that the increase in performance can be due to two reasons: (1) RNN is able to learn a better estimate of the patient status as it sees longer patient records and (2) the patient's status stabilizes over time and the prediction task becomes easier.

Another experiment was conducted to understand the behavior of the network by giving synthetic inputs. We chose hypertension (ICD-9 code 401.9) as an example of a frequently observed diagnosis, and Klinefelter's syndrome (ICD-9 code 758.7) as an example of an infrequent diagnosis. We created two synthetic patients who respectively have 200 visits of 401.9 and 758.7. Then we used the best performing network to predict the diagnosis codes for the next visits. The results in Figure 3b shows contrasting patterns: when the input is one of the frequent codes such as hypertension, the network quickly learns a more specific set of output codes as next disease. When we select an infrequent code like Klinefelter's syndrom as the input, the network's output is more diverse and mostly the frequently observed codes. The top 30 codes after convergence shown in Table 4 in Appendix C confirm the disparity of the diversity of the predicted codes for the two cases.

In order to take a closer look at the performance of Doctor AI, in Table 3 (in Appendix C) we list the predicted, true, and historical diagnosis codes for five visits of different patients. The blue items represent the correct predictions. The results are promising and show that, given the history of the patient, the Doctor AI can predict the true diagnostic codes. The results highly mimic the way a human doctor will interpret the disease predictions from the history. For all five of the cases shown in Table 3, the set of predicted diseases contain most, if not all of the true diseases. For example, in the first case, the top 3 predicted diseases match

Figure 4: The impact of pre-training on improving the performance on smaller datasets. In the first experiment, we first train the model on a small dataset (red curve). In the second experiment, we pre-train the model on our large dataset and use it for initializing the training of the smaller dataset. This procedure results in more than 20% improvement in the performance.



the true diseases. A human doctor would likely predict similar diseases to the ones predicted with Doctor AI, since old myocardial infarction and chronic ischemic heart disease can be associated with infections and diabetes (Stevens et al., 1978). Further clinical analysis is provided in Appendix C.1.

4.6 KNOWLEDGE TRANSFER ACROSS HOSPITALS

As we observed from the previous experiments, the dynamics of clinical events are complex, which requires models with a high representative power. However, many institutions have not yet collected large scale datasets, and training such models could easily lead to overfitting. To address this challenge, we resort to the recent advances in domain adaptation techniques for deep neural networks (Mesnil et al., 2012; Bengio, 2012; Yosinski et al., 2014; Hoffman et al., 2014; Paine et al., 2014).

A clinical dataset of 7,653 patients over 5 years of observation from another hospital was chosen to conduct the experiment. This dataset differs from the Sutter dataset in that it consists of demographically and diagnostically different patients. The number of unique diagnosis code in this dataset is 1092, which is a subset of Sutter dataset. From the dataset, we extracted sequences of 3-digit ICD-9 codes. We chose 5,000 patients for training, 2,683 for testing. We chose the 2-layer RNN with 1000 dimensional hidden layer, and performed two experiments. First, we trained the model only on the target dataset. Second, we initialized the coefficients of the model with the values learned from the 3-digit ICD-9 sequences of Sutter data, then we refined the coefficients with the target dataset. Figure 4 shows the vast improvement of the prediction performance induced by the knowledge transfer from the Sutter data. It is interesting that the model trained on the Sutter dataset without any refinement achieves a significantly higher recall, and further refinements improve the recall up to 15%.

4.7 DISCUSSION

In healthcare, it is desirable to have models that are interpretable; i.e., models' parameters can be translated to clinically meaningful quantities that physicians or patients understand. However, there is a well-known trade-off between interpretability (intelligibleness) and accuracy of machine learning algorithms (Caruana et al., 2015). Neural networks, and in particular Recurrent Neural Networks, are more on the accurate side rather than the intelligible side of the trade-off spectrum. Although, several recent attempts have been made to interpret the parameters of RNNs, such as (Ghosh & Karamcheti, 1992) and this problem remains an active line of research (Karpathy et al., 2015; Che et al., 2015). Interpretability can be considered a limitation of RNN in healthcare applications, although we believe the significant gain in accuracy in this approach outweighs the limitation.

While interpretability of the model is desirable in healthcare applications, the accurate black-box models can still be useful. In fact, the common clinical practice does not require practitioners to fully understand the underlying mechanism of how a particular drug or lab test works. For example, pharmaceutical companies are not required to show exactly why their proposed medicine works. They only need to show efficacy through randomized control trials. In the same spirit, with this early evidence from this work, Doctor AI can be prospectively validated through randomized clinical trials in order to apply in practice.

Finally, it is worth mentioning that interpretability of machine learning algorithms usually requires a discussion about causality and whether the algorithm can uncover causal relationships. Despite the fact that most of the common machine learning algorithms are not guaranteed to find causal relationships between features and labels, we still find them useful, because they provide *accurate prediction* of the target label (Spirtes, 2010). Similarly, Doctor AI's main objective is to provide accurate diagnostic and medication prediction which can be of great value in practice as a clinical decision support tool.

5 CONCLUSION

In this work, we proposed Doctor AI system, which is a RNN-based model that can learn efficient patient representation from a large amount of longitidinal patient records and predict future events of patients. We demonstrated Doctor AI on two large real-world EHR datasets, which achieved 64.30% recall@10 and significantly outperformed many baselines. The empirical analysis by a medical expert confirmed that Doctor AI not only mimics the predictive power of human doctors, but also provides diagnostic results that are clinically meaningful.

Our proposed Doctor AI can potentially open up new avenues for further improvement of computational health problems. Applications and extensions of Doctor AI can be studied in diverse clinical settings including expanding toward rich and unstructured data sources such as medical images and clinical notes.

ACKNOWLEDGMENTS

The authors would like to thank the researchers from Sutter Health and Vanderbilt University for their invaluable input to this work. This work was supported by the National Science Foundation, award IIS- #1418511 and CCF-#1533768, Children's Healthcare of Atlanta, CDC I-SMILE project, Google Faculty Award, AWS Research Award, Microsoft Azure Research Award and UCB.

REFERENCES

- Bahadori, Mohammad Taha, Liu, Yan, and Xing, Eric P. Fast structure learning in generalized stochastic processes with latent factors. In *KDD*, pp. 284–292, 2013.
- Bastien, Frédéric, Lamblin, Pascal, Pascanu, Razvan, Bergstra, James, Goodfellow, Ian J., Bergeron, Arnaud, Bouchard, Nicolas, and Bengio, Yoshua. Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.
- Bengio, Yoshua. Deep learning of representations for unsupervised and transfer learning. Unsupervised and Transfer Learning Challenges in Machine Learning, 7:19, 2012.
- Bengio, Yoshua, Courville, Aaron, and Vincent, Pierre. Representation learning: A review and new perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(8):1798–1828, 2013.
- Caruana, Rich, Lou, Yin, Gehrke, Johannes, Koch, Paul, Sturm, Marc, and Elhadad, Noémie. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In *KDD*, 2015.

- Chapman, Wendy W, Bridewell, Will, Hanbury, Paul, Cooper, Gregory F, and Buchanan, Bruce G. A simple algorithm for identifying negated findings and diseases in discharge summaries. *Journal of biomedical informatics*, 34(5):301–310, 2001.
- Che, Zhengping, Purushotham, Sanjay, Khemani, Robinder, and Liu, Yan. Distilling knowledge from deep networks with applications to healthcare domain. *arXiv preprint arXiv:1512.03542*, 2015.
- Choi, Edward, Du, Nan, Chen, Robert, Song, Le, and Sun, Jimeng. Constructing disease network and temporal progression model via context-sensitive hawkes process. In *ICDM*, 2015.
- Chung, Junyoung, Gulcehre, Caglar, Cho, KyungHyun, and Bengio, Yoshua. Empirical evaluation of gated recurrent neural networks on sequence modeling. *arXiv preprint arXiv:1412.3555*, 2014.
- De Winter, Willem, DeJongh, Joost, Post, Teun, Ploeger, Bart, Urquhart, Richard, Moules, Ian, Eckland, David, and Danhof, Meindert. A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying type 2 diabetes mellitus. *Journal of pharmacokinetics and pharmacodynamics*, 33(3):313–343, 2006.
- Foucher, Yohann, Giral, Magali, Soulillou, Jean-Paul, and Daures, Jean-Pierre. A semi-markov model for multistate and interval-censored data with multiple terminal events. application in renal transplantation. *Statistics in medicine*, 26(30):5381–5393, 2007.
- Ghosh, Joydeep and Karamcheti, Vijay. Sequence learning with recurrent networks: analysis of internal representations. In *Aerospace Sensing*, pp. 449–460. International Society for Optics and Photonics, 1992.
- Graves, Alex. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013.
- Graves, Alex and Jaitly, Navdeep. Towards end-to-end speech recognition with recurrent neural networks. In *ICML*, pp. 1764–1772, 2014.
- Graves, Alex, Liwicki, Marcus, Fernández, Santiago, Bertolami, Roman, Bunke, Horst, and Schmidhuber, Jürgen. A novel connectionist system for unconstrained handwriting recognition. *PAMI*, 2009.
- Heckerman, David. A tractable inference algorithm for diagnosing multiple diseases. In UAI, 1990.
- Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-term memory. Neural computation, 1997.
- Hoffman, Judy, Guadarrama, Sergio, Tzeng, Eric S, Hu, Ronghang, Donahue, Jeff, Girshick, Ross, Darrell, Trevor, and Saenko, Kate. Lsda: Large scale detection through adaptation. In Advances in Neural Information Processing Systems, pp. 3536–3544, 2014.
- Ito, Kaori, Ahadieh, Sima, Corrigan, Brian, French, Jonathan, Fullerton, Terence, Tensfeldt, Thomas, Group, Alzheimer's Disease Working, et al. Disease progression meta-analysis model in alzheimer's disease. *Alzheimer's & Dementia*, 6(1):39–53, 2010.
- Jackson, Christopher H, Sharples, Linda D, Thompson, Simon G, Duffy, Stephen W, and Couto, Elisabeth. Multistate markov models for disease progression with classification error. *JRSS-D*, 2003.
- Johnson, Matthew J and Willsky, Alan S. Bayesian nonparametric hidden semi-markov models. *The Journal of Machine Learning Research*, 14(1):673–701, 2013.
- Karpathy, Andrej, Johnson, Justin, and Li, Fei-Fei. Visualizing and understanding recurrent networks. arXiv preprint arXiv:1506.02078, 2015.

- Keith, Norman M, Wagener, Henry P, and Barker, Nelson W. Some different types of essential hypertension: their course and prognosis. *The American Journal of the Medical Sciences*, 197(3):332–343, 1939.
- Kiros, Ryan, Salakhutdinov, Ruslan, and Zemel, Richard S. Unifying visual-semantic embeddings with multimodal neural language models. *arXiv preprint arXiv:1411.2539*, 2014.
- Kuusisto, Johanna, Koivisto, Keijo, Mykkänen, L, Helkala, Eeva-Liisa, Vanhanen, Matti, Hänninen, T, Pyörälä, K, Riekkinen, Paavo, and Laakso, Markku. Essential hypertension and cognitive function. the role of hyperinsulinemia. *Hypertension*, 22(5):771–779, 1993.
- Lange, Jane. Latent Continuous Time Markov Chains for Partially-Observed Multistate Disease Processes. PhD thesis, 2014.
- Lange, Jane M, Hubbard, Rebecca A, Inoue, Lurdes YT, and Minin, Vladimir N. A joint model for multistate disease processes and random informative observation times, with applications to electronic medical records data. *Biometrics*, 71(1):90–101, 2015.
- Le, Quoc V, Jaitly, Navdeep, and Hinton, Geoffrey E. A simple way to initialize recurrent networks of rectified linear units. *arXiv preprint arXiv:1504.00941*, 2015.
- Linderman, Scott and Adams, Ryan. Discovering latent network structure in point process data. In *ICML*, pp. 1413–1421, 2014.
- Liniger, Thomas Josef. Multivariate hawkes processes. PhD thesis, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 18403, 2009, 2009.
- Liu, Yu-Ying, Ishikawa, Hiroshi, Chen, Mei, Wollstein, Gadi, Schuman, Joel S, and Rehg, James M. Longitudinal modeling of glaucoma progression using 2-dimensional continuous-time hidden markov model. In *Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013*, pp. 444–451. 2013.
- Manning, Christopher D., Raghavan, Prabhakar, and Schutze, Hinrich. Scoring, term weighting, and the vector space model. In *Introduction to Information Retrieval*. Cambridge University Press, 2008.
- Mesnil, Grégoire, Dauphin, Yann, Glorot, Xavier, Rifai, Salah, Bengio, Yoshua, Goodfellow, Ian J, Lavoie, Erick, Muller, Xavier, Desjardins, Guillaume, Warde-Farley, David, et al. Unsupervised and transfer learning challenge: a deep learning approach. *ICML Unsupervised and Transfer Learning*, 27:97–110, 2012.
- Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado, Greg S, and Dean, Jeff. Distributed representations of words and phrases and their compositionality. In *NIPS*, 2013.
- Mould, DR. Models for disease progression: new approaches and uses. *Clinical Pharmacology & Therapeutics*, 92(1):125–131, 2012.
- Nodelman, Uri, Shelton, Christian R, and Koller, Daphne. Continuous time bayesian networks. In UAI, pp. 378–387. Morgan Kaufmann Publishers Inc., 2002.
- Paine, Tom Le, Khorrami, Pooya, Han, Wei, and Huang, Thomas S. An analysis of unsupervised pre-training in light of recent advances. arXiv preprint arXiv:1412.6597, 2014.
- Ranganath, Rajesh, Perotte, Adler, Elhadad, Noémie, and Blei, David M. The survival filter: Joint survival analysis with a latent time series. In *UAI*, 2015.
- Saxe, Andrew M, McClelland, James L, and Ganguli, Surya. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Schmidhuber, Jürgen. Deep learning in neural networks: An overview. Neural Networks, 61:85–117, 2015.

- Spirtes, Peter. Introduction to causal inference. JMLR, 11:1643–1662, 2010.
- Stevens, Victor J, Rouzer, Carol A, Monnier, Vincent M, and Cerami, Anthony. Diabetic cataract formation: potential role of glycosylation of lens crystallins. *PNAS*, 75(6):2918–2922, 1978.
- Sukkar, Rafid, Katz, Edward, Zhang, Yanwei, Raunig, David, and Wyman, Bradley T. Disease progression modeling using hidden markov models. In *EMBC*, 2012.
- Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc VV. Sequence to sequence learning with neural networks. In *NIPS*, pp. 3104–3112, 2014.
- Tangri, Navdeep, Stevens, Lesley A, Griffith, John, Tighiouart, Hocine, Djurdjev, Ognjenka, Naimark, David, Levin, Adeera, and Levey, Andrew S. A predictive model for progression of chronic kidney disease to kidney failure. *Jama*, 305(15):1553–1559, 2011.
- Truccolo, Wilson, Eden, Uri T, Fellows, Matthew R, Donoghue, John P, and Brown, Emery N. A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. *Journal of neurophysiology*, 93(2):1074–1089, 2005.
- Veen, Alejandro and Schoenberg, Frederic P. Estimation of space-time branching process models in seismology using an em-type algorithm. JASA, 103(482):614–624, 2008.
- Wang, Xiang, Sontag, David, and Wang, Fei. Unsupervised learning of disease progression models. In *KDD*, 2014.
- Yosinski, Jason, Clune, Jeff, Bengio, Yoshua, and Lipson, Hod. How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems, pp. 3320–3328, 2014.
- Zaremba, Wojciech and Sutskever, Ilya. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.
- Zhou, Jiayu, Liu, Jun, Narayan, Vaibhav A, and Ye, Jieping. Modeling disease progression via fused sparse group lasso. In *KDD*, pp. 1095–1103, 2012.
- Zhou, Ke, Zha, Hongyuan, and Song, Le. Learning social infectivity in sparse low-rank networks using multi-dimensional hawkes processes. In AISTATS, pp. 641–649, 2013.
- Zhu, Lingjiong. Nonlinear Hawkes Processes. PhD thesis, New York University, 2013.

A LEARNING THE SKIP-GRAM VECTORS FROM THE EHR

Learning efficient representations of medical codes (*e.g.* diagnosis codes, medication codes, and procedure codes) may lead to improved performance of many clinical applications. We specifically used Skip-gram (Mikolov et al., 2013) to learn real-valued multidimensional vectors to capture the latent representation of medical codes from the EHR.

We processed the Sutter PAMF dataset so that diagnosis codes, medication codes, procedure codes are laid out in a temporal order. If there are multiple codes at a single visit, they were laid out in a random order. Then using the context window size of 5 to the left and 5 to the right, and applying Skip-gram, we were able to project diagnosis codes, medication codes and procedure codes into the same lower dimensional space, where similar or related codes are embedded close to one another. For example, hypertension, obesity, hyperlipidemia all share similar values compared to pneumonia or bronchitis. The trained Skip-gram vectors are then plugged into RNN so that a multi-hot vector can be converted to vector representations of medical codes.

B DETAILS OF THE BASELINES

B.1 DETAILS OF TRAINING PROCEDURE FOR BASELINES

We use a multilayer perceptron with a hidden layer of width 2,000. We use dropout with p = 0.3 and apply L_1 regularization to all of the weight matrices. The activation functions in the first and output layers are selected to be sigmoid and softmax functions respectively. For prediction of time intervals, we used rectified linear units. The regularization parameter has been increased with the number of lags to keep the performance of the model in high-dimensional regimes.

B.2 MANUAL FEATURE EXTRACTION DETAILS

The process of extracting *tf-idf* like features for each visit is as follows: First, we compute the *p*-dimensional count vector by counting the number of visits in which each code has been observed. The *idf* vector is computing by taking the logarithm of total number of visits divided by the count vector.

Then, the *tf* vector is computed for each visit by counting the number of codes observed in *all visits* until the current visit. This process is used to ensure that the features include information from past visits. Finally, we use the element-wise product of the *tf* and *idf* vectors as the *tf-idf* vector.

C DETAILED INSPECTION OF RESULTS

The detailed results are shown in Table 3.

C.1 SUPPLEMENTARY CLINICAL EXPLANATION

In the fourth case, visual disturbances can be associated with migraines and essential hypertension (Keith et al., 1939). Further, essential hypertension may be linked to cognitive function (Kuusisto et al., 1993), which plays a role in anxiety disorders and dissociative and somatoform disorders. Regarding codes that are guessed incorrectly with the fourth case, they can still be plausible given the history. For example, cataracts, and disorders of refraction and accomodation could have been guessed based on a history of visual disturbances, as well as strabismus and disorders of binocular eyemovements. Allergic rhinitis could have been guessed, because there was a history of allergic rhinitis. In summary, Doctor AI is able to very accurately predict the true diagnoses in the sample patients. The results are promising and should motivate future studies involving the application of Doctor AI on different datasets exhibiting other populations of patients.

diagnoses.
(1)
future
or AI and the true fur
the
g
Iaı
A
es by Doctor
2
ъ
diagnos
the e
ft
n o
Compar
Table (

	Dradictad		Thus		History
ICD9	Description	ICD9 D	escription	ICD9	ICD9 Description
412 V58 414 272 272 272 285 428 285 285 285 285 285 285 285 704	 Old myocardial infarction Encounter for other and unspecified procedures Other forms of chronic ischemic heart disease Disorders of lipoid metabolism Diabetes mellitus Chronic kidney disease (CKD) Heart failure Other and unspecified anemias Need for prophylactic vaccination and inoculation against certain diseases Special screening for malignant neoplasms 	414 412 V58	Other forms of chronic ischemic heart disease Old myocardial infarction Encounter for other and unspecified procedures	465 250 366 V58 362	Acute upper respiratory infections of multiple or unspecified sites Diabetes mellitus Cataract Encounter for other and unspecified procedures Other retinal disorders
V07 477 780 401 786 493 300 300 530 530 719		V07 401 786 782	Need for isolation and other prophylactic measures Essential hypertension Symptoms involving respiratory system and other chest symptoms Symptoms involving skin and other integumentary tissue	782 477 V07 564 401	Symptoms involving skin and other integumentary tissue Allergic rhinitis Need for isolation and other prophylactic measures Functional digestive disorders, not elsewhere classified Essential hypertension
453 V58 V12 V43 V43 V43 V43 V43 V43 V43 V43 V43 V43		715 V12 719 V58	Osteoarthrosis and allied disorders Personal history of certain other diseases Other and unspecified disorders of joint Encounter for other and unspecified procedures	453 956 V43	Other venous embolism and thrombosis Injury to peripheral nerve(s) of pelvic girdle and lower limb Organ or tissue replaced by other means
477 780 300 300 306 306 366 367 367 368 367 368 367 368		401 780 346 300	Essential hypertension General symptoms Migraine Anxiety, dissociative and somatoform disorders	782 477 692 368 378	Symptoms involving skin and other integumentary tissue Allergic rhinitis Contact dermatitis and other eczema Visual disturbances Strabismus and other disorders of binocular eye movements
428 427 401 786 786 786 788 414 788 414 788	Heart failureCardiac dysrhythmiasCardiac dysrhythmiasDisorders of lipoid metabolismEssential hypertensionSymptoms involving respiratory system and other chest symptomsMalignant neoplasm of prostateDiabetes mellitusOther forms of chronic ischemic heart diseaseSymptoms involving urinary systemOther diseases of endocardium	250 402 272 427	Diabetes mellitus Hypertensive heart disease Heart failure Disorders of lipoid metabolism Cardiac dysrhythmias	466 428 786 785 250	Acute bronchitis and bronchiolitis Heart failure Symptoms involving respiratory system and other chest symptoms Symptoms involving cardiovascular system Diabetes mellitus

Description ICD9 Pserifytion Essential hypertension 272 Disorders of lipoid metabolism 272 730 Symptoms involving respiratory system and other chest symptoms 273 730 Need for prophylactic vascination and inoculation against combinations of diseases 730 770 Special screening for malignant neoplasms 730 783 783 Need for prophylactic vascination 1141 141 141 Disorders of fluid, electrolyte, and acid-base balance 275 178 275 Symptoms involving skin and other integumentary tissue 780 256 141 Disorders of fluid, electrolyte, and acid-base balance 278 278 278 Vitamin D deficiency Other and unspecified disorders of joint 208 278 278 Other symptoms involving abdomen and pelvis 0ther disorders of external ear 270 278 Disorders of external ear Disorders of external ear 270 278 Other symptoms involving abdomen and pelvis 278 274 274 Other symptoms involving abdomen and pelvis		Hypertension		Klinefelter's syndrome
Essential hypertension272Disorders of ipoid metabolism270Symptoms involving respiratory system and other chest symptoms704Symptoms involving respiratory system and inoculation against combinations of diseases730Need for prophylactic vaccination and inoculation against certain diseases780Need for prophylactic vaccination and inoculation against certain diseases780Special screening for malignant neoplasms783Need for prophylactic vaccination and inoculation against certain diseases783Symptoms involving skin and other integumentary tissue786Symptoms involving skin and other integumentary tissue780Vitamin D deficiency786Other and unspecified disorders of joint250Disorders of reacting skin and other integumentary tissue786Symptoms involving skin and other integumentary tissue786Symptoms involving skin and other integumentary tissue786Symptoms involving skin and other integumentary tissue730Other and unspecified disorders of point250Disorders of external ear790Disorders of orther disorders of soft tissues790Other disorders of soft tissues790Other disorders of orther and unspecified disorders of	ICD9	Description	ICD9	Description
Disorders of lipoid metabolism Symptoms involving respiratory system and other chest symptoms Need for prophylactic vaccination and inoculation against combinations of diseases Nonspecific findings on examination of blood Special screening for malipant meoplasms Need for prophylactic vaccination and inoculation against certain diseases Special screening for malipant meoplasms Need for prophylactic vaccination and inoculation against certain diseases General screening for malipant meoplasms Need for prophylactic vaccination and inoculation against certain diseases Special screening for malipant meoplasms General symptoms Need for prophylactic vaccination and inoculation tage internal symptoms involving skin and other integumentary tissue Vitamin D deficiency Other and unspecified disorders of joint Cardiac dysrhythmias Disorders of wether and urinary tract Special investigations and examinations Other symptoms involving abdomen and pelvis Other symptoms involving abdomen and pelvis Other cellulitis and abscess Need for prophylactic vaccination and inoculation against bacterial diseases Other and unspecified disorders of back Encounter for other and unspecified disorders of back Encounter for other and unspecified disorders of back Distributions Other persons seeking consultation Special screening for other conditions Other persons seeking consultation Chronic kidney disease (CKD) Special screening for other conditions Other conditions influencing headth status Other conditions influencing headth status	401	Essential hypertension	272	Disorders of lipoid metabolism
Symptoms involving respiratory system and other chest symptoms704Need for prophylactic vaccination and inoculation against combinations of diseases730Need for prophylactic vaccination and inoculation against combinations of diseases730Special screening for malignant neoplasms730Need for prophylactic vaccination and inoculation against certain diseases730Special screening for malignant neoplasms730Need for prophylactic vaccination and inoculation against certain diseases730General symptoms776General symptoms776Jisorders of fluid, electrolyte, and acid-base balance208Symptoms involving skin and other integumentary tissue786Symptoms involving skin and other integumentary tissue786Disorders of external ear780Disorders of external ear790Disorders of external ear	272	Disorders of lipoid metabolism	V70	General medical examination
Need for prophylactic vaccination and inoculation against combinations of diseases730Nonspecific findings on examination of bloodSpecial screening for malignant neoplasms780Need for prophylactic vaccination and inoculation against certain diseases780Special screening for malignant neoplasms780Need for prophylactic vaccination253Symptoms250General medical examination250Symptoms involving skin and other integumentary tissue250Vitamin D deficiency782Other and unspecified disorders of joint260Cardiac dysrlythmias200Disorders of external ear790Disorders of external ear790Disorders of external ear280Other and unspecified disorders of joint280Other disorders of external ear280Disorders of other symptoms involving abdomen and pelvis703Other external ear280Disorders of soft tissues281Other and unspecified disorders of back284Disorders of soft tissues283Other and unspecified procedures and aftercare274Other and unspecified procedures and aftercare772Other and unspecified procedures and aftercare772 <td>786</td> <td>Symptoms involving respiratory system and other chest symptoms</td> <td>V04</td> <td>Need for prophylactic vaccination and inoculation against certain diseases</td>	786	Symptoms involving respiratory system and other chest symptoms	V04	Need for prophylactic vaccination and inoculation against certain diseases
Nonspecific findings on examination of blood780Special screening for malignant neoplasms783Need for prophylactic vaccination and inoculation against certain diseases295General medical examination781General symptoms785General symptoms786Symptoms involving skin and other integumentary tissue782Symptoms involving skin and other integumentary tissue782Other and unspecified disorders of joint250Other and unspecified disorders of joint208Disorders of external ear786Disorders of rethra and urinary tract208Other disorders of nethra and urinary tract208Other disorders of rethra and urinary tract280Other disorders of rethra and urinary tract280Other disorders of soft tissues232Other disorders of outher disorders of will be compliations233Other disorders of nethra and urinary tract244Special investigations and examinations238Other disorders of soft tissues256Other disorders of soft tissues258Other disorders of soft tissues258Other disorders of soft tissues258Other and unspecified procedures and aftercare254Other and unspecified procedures and aftercare254Other persons seeking consultation254Other persons seeking consultation254Other persons seeking consultation254Other persons seeking consultation254Other persons seeking consultation	V06	Need for prophylactic vaccination and inoculation against combinations of diseases	730	Osteomyelitis, periostitis, and other infections involving bone
Special screening for malignant neoplasms783Special screening for malignant neoplasms783Need for prophylactic vaccination and inoculation against certain diseases295General symptoms780General symptoms781General symptoms781General symptoms783Symptoms involving skin and other integumentary tissue782Symptoms involving skin and other integumentary tissue786Symptoms involving skin and other integumentary tissue786Vitamin D deficiency786Vitamin D deficiency786Other and unspecified disorders of prophylactic786Disorders of external ear790Disorders of investigations and examinations790Other disorders of soft tissues233Other disorders of soft tissues790Other and unspecified disorders of back244Differ redultitis and abscess799Other and unspecified disorders of back255Other and unspecified disorders of back255Other and unspecified disorders of back255Differ prophylactic vaccination264Other mand unspecified disorders of back255Differ persons seeking consultation273Special screening for other conditions274Other persons seeking consultation274Other	790	Nonspecific findings on examination of blood	780	General symptoms
Need for prophylactic vaccination and inoculation against certain diseases General medical examination General symptoms General symptoms Disorders of fluid, electrolyte, and acid-base balance Symptoms involving skin and other integumentary tissue Symptoms involving skin and other integumentary tissue Nitamin D deficiency Other and unspecified disorders of joint Cardiac dysrhythmias Disorders of external ear Disorders of external ear Disorders of uncethra and urinary tract Special investigations and examinations Other disorders of urethra and urinary tract Special investigations and examinations Other disorders of special investigations and examinations Other symptoms involving abdomen and pelvis Other relutities and abscess Other relutities and abscess Other and unspecified disorders of back Encounter for other and unspecified procedures and aftercare Other and unspecified disorders of back Encounter for other conditions Special screening for other conditions Dither persons seeking consultation Cuther persons seeking consultation Cuther conditions influencing health status Other conditions influencing health status	V76	Special screening for malignant neoplasms	783	Symptoms concerning nutrition, metabolism, and development
General medical examination V76 General symptoms V06 Disorders of fluid, electrolyte, and acid-base balance V06 Symptoms involving skin and other integumentary tissue V06 Symptoms involving skin and other integumentary tissue 250 Vitamin D deficiency 782 Other and unspecified disorders of joint 208 Disorders of external ear 786 Disorders of external ear 786 Disorders of urethra and urinary tract 208 Disorders of urethra and uninary tract 208 Other disorders of urethra and uninary tract 280 Other disorders of urethra and uninary tract 280 Other disorders of urethra and uninations 281 Other disorders of soft tissues 281 Other disorders of soft tissues 281 Other cellulitis and abscess 281 Other and unspecified disorders of back 255 Encounter for other and unspecified procedures and aftercare 799 Orther persons seeking consultation 279 Other persons seeking consultation 274 Other real unspecified procedures and aftercare 755 Ot	V04		295	Schizophrenic disorders
General symptomsDisorders of fluid, electrolyte, and acid-base balanceSymptoms involving skin and other integumentary tissueVitamin D deficiencyVitamin D deficiencyOther and unspecified disorders of jointCardiac dystrythmiasDisorders of external earDisorders of urethra and urinary tractDeter disorders of soft tissuesOther disorders of soft tissuesOther disorders of soft tissuesDisorders of soft tissuesOther and unspecified procedures and aftercareDeter ellulitis and abscessNeed for prophylactic vaccination and inoculation against bacterial diseasesDiter and unspecified procedures and aftercareDeter and unspecified procedures and aftercareDeter renditionsChronic kidney disease (CKD)GoutChronic kidney disease (CKD)GoutOther conditions influencing health statusDiffer transitDiffer transitDiffer transitDiffer transitDiffer transitDiffer transitDiffer transitDiffer transitDiffer transitDiffer transit <td>V70</td> <td>General medical examination</td> <td>V76</td> <td>Special screening for malignant neoplasms</td>	V70	General medical examination	V76	Special screening for malignant neoplasms
Disorders of fluid, electrolyte, and acid-base balanceY06Symptoms involving skin and other integumentary tissueY100Symptoms involving skin and other integumentary tissueY100Vitamin D deficiencyY100Other and unspecified disorders of jointZ50Cardiac dysrhythmiasY100Disorders of external earY100Disorders of external earY100Disorders of external earY100Disorders of urethra and urinary tractY100Special investigations and examinationsY100Other disorders of urethra and urinary tractY100Special investigations and examinationsY100Other disorders of soft tissuesY100Other disorders of soft tissuesY100Other roundition and abscessY100Other and unspecified procedures and aftercareY172Other and unspecified procedures and aftercareY172Other prophylactic vaccinationY172Other prophylactionsY172Other prophylationsY172Other prophylationsY172Other prophylationsY172Other prophylationsY172Other prophylationsY146Other prophylationsY146Other conditions influencing health statusY146Other conditions influencing health statusY146	780	General symptoms	141	Malignant neoplasm of tongue
Symptoms involving skin and other integumentary tissue250Vitamin D deficiency782Vitamin D deficiency786Other and unspecified disorders of joint208Cardiac dysrhythmias208Disorders of external ear208Disorders of external ear208Disorders of external ear208Disorders of urethra and urinary tract208Disorders of uncentra and urinary tract208Other disorders of urethra and urinary tract280Other disorders of urethra and urinary tract280Other symptoms involving abdomen and pelvis281Other disorders of soft tissues281Other disorders of soft tissues281Other and unspecified disorders of back281Other and unspecified disorders of back279Other and unspecified disorders and aftercare255Other and unspecified procedures and aftercare255Other persons seeking consultation254Other persons seeking consultation254Other conditions294Other conditions294Other conditions influencing health status234Other conditions influencing health status234	276	Disorders of fluid, electrolyte, and acid-base balance	V06	Need for prophylactic vaccination and inoculation against combinations of diseases
Vitamin D deficiency782Other and unspecified disorders of joint786Cardiac dysrhythmias786Other and unspecified disorders of solutions208Disorders of external ear208Disorders of external ear790Diabetes mellitus790Other disorders of urethra and urinary tract280Other symptoms involving abdomen and pelvis281Other disorders of soft tissues281Other disorders of back281Other and unspecified disorders of back284Dither and unspecified disorders of back284Overweight, obesity and other hyperalimentation255Overweight, obesity and other hyperalimentation254Other persons seeking consultation254Other persons seeking consultation254Other conditions294Other conditions influencing health status274Other conditions influencing health status274	782	Symptoms involving skin and other integumentary tissue	250	Diabetes mellitus
Other and unspecified disorders of joint786Cardiac dysrhythmias208Disorders of external ear208Disorders of external ear790Diabetes mellitus790Other disorders of urethra and urinary tract280Other disorders of urethra and urinary tract280Special investigations and examinations280Other symptoms involving abdomen and pelvis281Other disorders of soft tissues281Other and unspecified disorders of back281Other and unspecified disorders of back244Overweight, obesity and other hyperalimentation255Overweight, obesity and other hyperalimentation254Other persons seeking consultation254Other persons seeking consultation254Other persons seeking consultation254Other conditions254Other conditions254Other persons seeking consultation254Other conditions254Other conditions254001Other co	268	Vitamin D deficiency	782	Symptoms involving skin and other integumentary tissue
Cardiac dysrhythmiasDisorders of external earDisorders of external earDisorders of external earDiabetes mellitusOther disorders of urethra and urinary tractSpecial investigations and examinationsOther symptoms involving abdomen and pelvisOther symptoms involving abdomen and pelvisOther cellulitis and abscessOther and unspecified disorders of backDisorders of backDisorders of backDisorders seeking consultationOther and unspecified disorders and aftercareOverweight, obesity and other hyperalimentationDiffer persons seeking consultationOther persons seeking consultationOther conditionsOther condi	719	Other and unspecified disorders of joint	786	Symptoms involving respiratory system and other chest symptoms
Disorders of external ear401Diabetes mellitus790Other disorders of urethra and urinary tract280Other disorders of urethra and urinary tract280Special investigations and examinations281Other symptoms involving abdomen and pelvis281Other disorders of soft tissues281Other cellulitis and abscess281Need for prophylactic vaccination and inoculation against bacterial diseases255Other and unspecified disorders of back244Encounter for other and unspecified procedures and aftercare255Overweight, obesity and other hyperalimentation254Other persons seeking consultation254Other persons seeking consultation254Other persons seeking consultation254Other persons seeking consultation254Other conditions254Other conditions254Other persons seeking consultation254Other persons seeking consultation254Other conditions254Other condi	427	Cardiac dysrhythmias	208	Leukemia of unspecified cell type
Diabetes mellitusDiabetes mellitusOther disorders of urethra and urinary tractSpecial investigations and examinationsOther symptoms involving abdomen and pelvisOther disorders of soft tissuesOther disorders of soft tissuesOther cellulitis and abscessNeed for prophylactic vaccination and inoculation against bacterial diseasesOther and unspecified disorders of backEncounter for other and unspecified procedures and aftercareOverweight, obesity and other hyperalimentationSpecial screening for other conditionsOther persons seeking consultationChronic kidney disease (CKD)GoutOther conditions influencing health statusOther conditions influencing health status	380	Disorders of external ear	401	Essential hypertension
Other disorders of urethra and urinary tract280Special investigations and examinations281Special investigations and examinations0 ther symptoms involving abdomen and pelvisOther disorders of soft tissues281Other cellulitis and abscess281Other cellulitis and abscess283Need for prophylactic vaccination and inoculation against bacterial diseases255Other and unspecified disorders of back244Encounter for other and unspecified procedures and aftercare244Overweight, obesity and other hyperalimentation151Special screening for other conditions294Other persons seeking consultation294Chronic kidney disease (CKD)204GoutOther conditions influencing health statusOther conditions influencing health status244	250	Diabetes mellitus	790	Nonspecific findings on examination of blood
Special investigations and examinations607Special investigations and examinations0ther symptoms involving abdomen and pelvisOther disorders of soft tissues281Other cellulitis and abscess703Other cellulitis and abscess332Need for prophylactic vaccination and inoculation against bacterial diseases255Other and unspecified disorders of back244Encounter for other and unspecified procedures and aftercare244Overweight, obesity and other hyperalimentation244Special screening for other conditions151Other persons seeking consultation294Chronic kidney disease (CKD)344GoutOther conditions influencing health status	599	Other disorders of urethra and urinary tract	280	Iron deficiency anemias
Other symptoms involving abdomen and pelvis281Other disorders of soft tissues281Other cellulitis and abscess703Other cellulitis and abscess332Need for prophylactic vaccination and inoculation against bacterial diseases255Tother and unspecified disorders of back244Encounter for other and unspecified procedures and aftercare244Overweight, obesity and other hyperalimentation244Special screening for other conditions151Other persons seeking consultation294Chronic kidney disease (CKD)344Other conditions influencing health status146	V72	Special investigations and examinations	607	Disorders of penis
Other disorders of soft tissuesV03Other cellulitis and abscess0Other cellulitis and abscess332Need for prophylactic vaccination and inoculation against bacterial diseases255Tope255Other and unspecified disorders of back799Encounter for other and unspecified procedures and aftercare244Overweight, obesity and other hyperalimentation244Special screening for other conditions151Other persons seeking consultation294Chronic kidney disease (CKD)344Other conditions influencing health status146	789	Other symptoms involving abdomen and pelvis	281	Other deficiency anemias
Other cellulitis and abscess332Need for prophylactic vaccination and inoculation against bacterial diseases332Need for prophylactic vaccination and inoculation against bacterial diseases255Other and unspecified disorders of back799Encounter for other and unspecified procedures and aftercare244Overweight, obesity and other hyperalimentation244Special screening for other conditions151Other persons seeking consultation294Chronic kidney disease (CKD)344GoutOther conditions influencing health status	729	Other disorders of soft tissues	V03	Need for prophylactic vaccination and inoculation against bacterial diseases
Need for prophylactic vaccination and inoculation against bacterial diseases 255 Other and unspecified disorders of back 799 Encounter for other and unspecified procedures and aftercare 244 Overweight, obesity and other hyperalimentation 244 Special screening for other conditions 151 Other persons seeking consultation 294 Chronic kidney disease (CKD) 294 Gout V72 Other conditions influencing health status 146	682	Other cellulitis and abscess	332	Parkinson's disease
Other and unspecified disorders of back799Encounter for other and unspecified procedures and aftercare244Doerweight, obesity and other hyperalimentation244Overweight, obesity and other conditionsV58Special screening for other conditions151Other persons seeking consultation294Chronic kidney disease (CKD)344GoutOther conditions influencing health status	V03		255	Disorders of adrenal glands
Encounter for other and unspecified procedures and aftercare244Dverweight, obesity and other hyperalimentationV58Overweight, obesity and other conditionsV58Special screening for other conditions151Other persons seeking consultation294Chronic kidney disease (CKD)344GoutOther conditions influencing health status	724	Other and unspecified disorders of back	799	Other ill-defined and unknown causes of morbidity and mortality
Overweight, obesity and other hyperalimentationV58Special screening for other conditions151Other persons seeking consultation294Chronic kidney disease (CKD)344Gout0ther conditions influencing health status	V58	nd afterc	244	Acquired hypothyroidism
Special screening for other conditions 151 Other persons seeking consultation 294 Other persons seeking consultation 294 Chronic kidney disease (CKD) 772 Gout 344 Other conditions influencing health status 146	278	Overweight, obesity and other hyperalimentation	V58	Encounter for other and unspecified procedures and aftercare
Other persons seeking consultation 294 Chronic kidney disease (CKD) V72 Gout 344 Other conditions influencing health status 146	V82	Special screening for other conditions	151	Malignant neoplasm of stomach
Chronic kidney disease (CKD) Gout 344 0 Other conditions influencing health status 146	V65	Other persons seeking consultation	294	Persistent mental disorders due to conditions classified elsewhere
Gout Gout 146 146	585	Chronic kidney disease (CKD)	V72	Special investigations and examinations
Other conditions influencing health status	274	Gout	344	Other paralytic syndromes
	V49	Other conditions influencing health status	146	Malignant neoplasm of oropharynx

Table 4: Comparison of the diagnoses by Doctor AI for a frequent and an infrequent disease code after 200 time step.